22 research outputs found

    Muscleblind-like 3 deficit results in a spectrum of age-associated pathologies observed in myotonic dystrophy.

    Get PDF
    Myotonic dystrophy type I (DM1) exhibits distinctive disease specific phenotypes and the accelerated onset of a spectrum of age-associated pathologies. In DM1, dominant effects of expanded CUG repeats result in part from the inactivation of the muscleblind-like (MBNL) proteins. To test the role of MBNL3, we deleted Mbnl3 exon 2 (Mbnl3(ΔE2)) in mice and examined the onset of age-associated diseases over 4 to 13 months of age. Accelerated onset of glucose intolerance with elevated insulin levels, cardiac systole deficits, left ventricle hypertrophy, a predictor of a later onset of heart failure and the development of subcapsular and cortical cataracts is observed in Mbnl3(ΔE2) mice. Retention of embryonic splice isoforms in adult organs, a prominent defect in DM1, is not observed in multiple RNAs including the Insulin Receptor (Insr), Cardiac Troponin T (Tnnt2), Lim Domain Binding 3 (Ldb3) RNAs in Mbnl3(ΔE2) mice. Although rare DM1-like splice errors underlying the observed phenotypes cannot be excluded, our data in conjunction with the reported absence of alternative splice errors in embryonic muscles of a similar Mbnl3(ΔE2) mouse by RNA-seq studies, suggest that mechanisms distinct from the adult retention of embryonic splice patterns may make important contributions to the onset of age-associated pathologies in DM1

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL≡σ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z∼0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z∼1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a

    The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky

    Full text link
    Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-yy distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-yy map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.Comment: The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made publi

    The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters

    Full text link
    We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations σ8=0.819±0.015\sigma_8 = 0.819 \pm 0.015 at 1.8% precision, S8≡σ8(Ωm/0.3)0.5=0.840±0.028S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.840\pm0.028 and the Hubble constant H0=(68.3±1.1) km s−1 Mpc−1H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1} at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: σ8=0.812±0.013\sigma_8 = 0.812 \pm 0.013, S8≡σ8(Ωm/0.3)0.5=0.831±0.023S_8\equiv\sigma_8({\Omega_{\rm m}}/0.3)^{0.5}=0.831\pm0.023 and H0=(68.1±1.0) km s−1 Mpc−1H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}. These measurements agree well with Λ\LambdaCDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S8S_8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1σ\sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z∼0.5−5z\sim 0.5-5 on mostly-linear scales and galaxy lensing at z∼0.5z\sim 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Λ\LambdaCDM, limiting the sum of the neutrino masses to ∑mν<0.12\sum m_{\nu} < 0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Λ\LambdaCDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys.Comment: 30 pages, 16 figures, prepared for submission to ApJ. Cosmological likelihood data is here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al. Mass maps will be released when papers are publishe

    A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia

    No full text
    Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivointravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors

    Portable RF system retrofitted to the IVM.

    No full text
    <p>(A) The RF system integrated into the intravital microscope (IVM) for real-time imaging under RF exposure. (B) Mouse manipulation for imaging–an incision is made to expose and gently manipulate the 4T1 tumor for IVM imaging. (C) 4T1 tumor under IVM illumination with a x4 objective lens.</p

    High-temperature vessel degradation.

    No full text
    <p>(A)–(D) Impact of RF exposure on vessel architecture at four different time-points: 0:22, 6:53, 16:18, and 20:31 minutes, respectively. The tumor temperatures and RF power at those time points are shown in the upper-middle and upper-right hand side sections, respectively. Figure (E) illustrates the change in temperature and power with respect to time. Vessel degradation can be seen for temperatures > 41°C. A complete breakdown of the vessel architecture can be seen for temperatures > 47°C.</p

    Portable RF system setup and generated electric field.

    No full text
    <p>(A) Portable RF system consists of the transmitting unit (TX) and receiving head (RX) that generates a high-power electric field across the specimen (e.g. mouse). The system is driven by a variable power fixed RF amplifier (0–200 W, 13.56 MHz) that is cooled during operation by a water chiller. Heat production is monitored using an infrared (IR) camera or direct insertion of fiber optical probes. (B) Circuit representation of the portable RF system. (C) Setup for extracting electric-field intensities. An electric-field probe (EFP) is placed at specific points along the x- and z-axis in between the TX and RX heads and measures the voltage at each point for 20 W RF-power. (D) The electric field is derived from the voltage data and is plotted as an intensity contour plot.</p

    Modulation of tumor temperature using RF exposure.

    No full text
    <p>(A) Thermal fiber optic probe placement. Probes #1–3 are positioned (i) under the skin but above the tumor; (ii) under the skin in between the tumor and the main body; and (iii) under the skin next to the intraperitoneal cavity. (B) Extracted thermal probe data. The recorded temperature of the probes was modulated by turning on and off the RF system (+RF and–RF). The system was turned off once the tumor temperature (probe #1) reached 45°C, 43°C, and 41°C, respectively, and was turned on when all probes had values in the range ~29–31°C. (C) The IR camera simultaneously measured the surface temperature of the points where the thermal probes were located.</p

    Real-time RF-IVM imaging and post capture analysis.

    No full text
    <p>RF exposure shows transport of fluorescently bound albumin across the perfusion barrier into tumor region. Figure (A) and (B) depict the blue image channel (albumin) before and after (4.5 min) RF exposure. This data is shown superimposed with the tumor (red) channel in Figure (C) and (D). Figure (E) Control mouse (no RF) was imaged for 30 minutes on both channels. There is no transport of albumin into the tumor across the perfusion barrier. (F) Time lapsed images of the data shown in Figure (A) and (B). Figure (G) 4T1 tumor slices immunohistologically stained to the antibodies CD31 (green, vasculature endothelial cells), and albumin (red) for both RF (left image) and non-RF (right image) groups. Figure (H) depicts positive area fraction (PAF) of albumin accumulation in tumor slices. Finally, (I) is a quantitative video analysis of relative increase in albumin fluorescence (RAIF) in multiple 4T1 tumor surfaces exposed to RF under IVM (n = 4).</p
    corecore